Package: ldmppr 1.0.3.9000

ldmppr: Estimate and Simulate from Location Dependent Marked Point Processes

A suite of tools for estimating, assessing model fit, simulating from, and visualizing location dependent marked point processes characterized by regularity in the pattern. You provide a reference marked point process, a set of raster images containing location specific covariates, and select the estimation algorithm and type of mark model. 'ldmppr' estimates the process and mark models and allows you to check the appropriateness of the model using a variety of diagnostic tools. Once a satisfactory model fit is obtained, you can simulate from the model and visualize the results. Documentation for the package 'ldmppr' is available in the form of a vignette.

Authors:Lane Drew [aut, cre, cph], Andee Kaplan [aut]

ldmppr_1.0.3.9000.tar.gz
ldmppr_1.0.3.9000.zip(r-4.5)ldmppr_1.0.3.9000.zip(r-4.4)ldmppr_1.0.3.9000.zip(r-4.3)
ldmppr_1.0.3.9000.tgz(r-4.4-x86_64)ldmppr_1.0.3.9000.tgz(r-4.4-arm64)ldmppr_1.0.3.9000.tgz(r-4.3-x86_64)ldmppr_1.0.3.9000.tgz(r-4.3-arm64)
ldmppr_1.0.3.9000.tar.gz(r-4.5-noble)ldmppr_1.0.3.9000.tar.gz(r-4.4-noble)
ldmppr_1.0.3.9000.tgz(r-4.4-emscripten)ldmppr_1.0.3.9000.tgz(r-4.3-emscripten)
ldmppr.pdf |ldmppr.html
ldmppr/json (API)
NEWS

# Install 'ldmppr' in R:
install.packages('ldmppr', repos = c('https://lanedrew.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/lanedrew/ldmppr/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
Datasets:

On CRAN:

cpp

4.90 score 1 stars 2 scripts 33 exports 111 dependencies

Last updated 20 days agofrom:3564949f13. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKDec 03 2024
R-4.5-win-x86_64OKDec 03 2024
R-4.5-linux-x86_64OKDec 03 2024
R-4.4-win-x86_64OKDec 03 2024
R-4.4-mac-x86_64OKDec 03 2024
R-4.4-mac-aarch64OKDec 03 2024
R-4.3-win-x86_64OKDec 03 2024
R-4.3-mac-x86_64OKDec 03 2024
R-4.3-mac-aarch64OKDec 03 2024

Exports:%>%C_theta2_icheck_model_fitconditional_sumconditional_sum_logicaldist_one_dimestimate_parameters_scestimate_parameters_sc_parallelextract_covarsfull_productfull_sc_lhoodgenerate_mppinteraction_stpart_1_1_fullpart_1_2_fullpart_1_3_fullpart_1_4_fullpart_1_fullpart_2_fullplot_mpppower_law_mappingpredict_marksscale_rasterssim_spatial_scsim_temporal_scsimulate_mppsimulate_scspat_interactiontemporal_sctoroidal_dist_matrix_optimizedtrain_mark_modelvec_distvec_to_mat_dist

Dependencies:abindbundleclasscliclockclustercodetoolscolorspacecpp11crayondata.tabledeldirdiagramdialsDiceDesigndigestdoFuturedoParalleldplyrfansifarverforeachfurrrfuturefuture.applygenericsGETggplot2globalsgluegoftestgowerGPfitgridExtragtablehardhathmsipredisobanditeratorsjsonliteKernSmoothlabelinglatticelavalhslifecyclelistenvlubridatemagrittrMASSMatrixmgcvmodelenvmunsellnlmenloptrnnetnumDerivparallellyparsnippillarpkgconfigpolyclipprettyunitsprodlimprogressprogressrpurrrR6rangerRColorBrewerRcppRcppArmadilloRcppEigenrecipesrlangrpartrsamplescalessfdshapesliderspatstat.dataspatstat.explorespatstat.geomspatstat.randomspatstat.sparsespatstat.univarspatstat.utilsSQUAREMstringistringrsurvivaltensorterratibbletidyrtidyselecttimechangetimeDatetunetzdbutf8vctrsviridisLitewarpwithrworkflowsxgboostyardstick

Example ldmppr Workflow on Simulated Data

Rendered fromldmppr_howto.Rmdusingknitr::rmarkdownon Dec 03 2024.

Last update: 2024-11-27
Started: 2024-11-23